Ecology and Evolution

Open Access

Criteria for assessing climate change impacts on ecosystems

Craig Loehle

National Council for Air and Stream Improvement Inc., Washington Street, Naperville, lllinois, USA

Keywords

Biodiversity, climate envelope model,
extinction risk, General Circulation Model,
impact assessment.

Correspondence

Craig Loehle, National Council for Air and
Stream Improvement, Inc., 552 S Washington
Street, Suite 224, Naperville, IL 60540

Tel: 630-579-1190; Fax: 630-579-1195;
E-mail: CLoehle@ncasi.org

Received: 05 May 2011; Revised: 09 June
2011; Accepted: 11 June 2011.

doi: 10.1002/ece3.7

Introduction

Abstract

There is concern about the potential impacts of climate change on species and
ecosystems. To address this concern, a large body of literature has developed in
which these impacts are assessed. In this study, criteria for conducting reliable
and useful assessments of impacts of future climate are suggested. The major de-
cisions involve: clearly defining an emissions scenario; selecting a climate model;
evaluating climate model skill and bias; quantifying General Circulation Model
(GCM) between-model variability; selecting an ecosystem model and assessing un-
certainty; properly considering transient versus equilibrium responses; including
effects of CO, on plant response; evaluating implications of simplifying assump-
tions; and considering animal linkage with vegetation. A sample of the literature
was surveyed in light of these criteria. Many of the studies used climate simu-
lations that were >10 years old and not representative of best current models.
Future effects of elevated CO, on plant drought resistance and productivity were
generally included in growth model studies but not in niche (habitat suitability)
studies, causing the latter to forecast greater future adverse impacts. Overly simpli-
fied spatial representation was frequent and caused the existence of refugia to be
underestimated. Few studies compared multiple climate simulations and ecosys-
tem models (including parametric uncertainty), leading to a false impression of
precision and potentially arbitrary results due to high between-model variance. No
study assessed climate model retrodictive skill or bias. Overall, most current studies
fail to meet all of the proposed criteria. Suggestions for improving assessments are
provided.

type is currently found is characterized by some sort of sta-
tistical model, and this model is applied to a future climate

The potential future impacts of climate change are of increas-
ing concern. Impacts on ecosystems could potentially affect
the capacity of natural systems to produce wood products,
crops, livestock, and game. There is also concern about im-
pacts on biodiversity in general and species extinctions in
particular.

To assess these risks, a voluminous literature has appeared
in which ecosystem or species responses to future possible
climates are evaluated. These studies often utilize the exper-
imental literature as a basis for longer term extrapolation.
Two basic approaches have been used to evaluate long-term
natural system response (whereas crops can be evaluated ex-
perimentally and are not considered further here): habitat
suitability (niche) models and simulations. In habitat suit-
ability models, the climate space (with or without consider-
ation of soils, topography, etc.) where a species or vegetation

scenario (e.g., Aitken etal. 2008). In simulations, a tree, stand,
population, or ecosystem growth model is applied to current
and scenario cases and the results are compared (e.g., Coops
and Waring 2011).

While the literature using these approaches is vast, it is
not systematic or standardized. Many choices must be made
during the analysis that can lead to large and arbitrary differ-
ences in study outcomes. For example, Cramer et al. (2001),
using six dynamic global vegetation models, gave a range of
outcomes for the global carbon sink in 2100 under rising CO,
and climate change of 0.3 to 6.6 Pg C y !, an immense range
of 22x. Verburg et al. (2011) showed that spatial data errors
in mapped attributes can produce larger uncertainties than
the process under investigation. Further examples are cited
in later sections herein. Furthermore, it will be shown herein
that certain key factors have been left out of many analyses,
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potentially affecting their interpretation. Such issues can lead
to the observed widespread failures of model forecasting (e.g.,
Pilkey—Jarvis and Pilkey 2008).

The purpose of this study, then, is to propose criteria
for developing ecosystem assessments of response to climate
change. These criteria involve the choices that must be made
at each step of the assessment process. In some cases, it is
sufficient to make explicit the limits that a particular choice
(e.g., emissions scenario) places on what can be inferred from
the study. In others, including or excluding a particular factor
or model can create a particular bias that must be taken into
account. For example, if a particular climate model predicts
too much or too little rainfall in the 20th century base runs
compared to actual rainfall, this will bias or distort results
of an ecosystem simulation. The presentation of criteria is
followed by an assessment of the extent to which the criteria
have been addressed in recent literature.

Ecosystem Assessment Criteria

The assessment of any ecosystem impact involves a series of
steps, especially when long-term effects are being evaluated.
Failure to exercise care in this process can lead to underesti-
mation of uncertainty and even to arbitrary results. In order
to avoid such negative outcomes, a minimal set of criteria
is proposed for some critical steps in this process. More de-
tailed criteria could be developed (e.g., for statistical testing),
but this minimal set is sufficient for the present analysis. The
criteria for decisions that must be made to put together a
complete and valid assessment involve the following:

(1) Clearly define emissions scenario.

(2) Select climate model(s).

(3) Evaluate climate model skill and bias.

(4) Quantify General Circulation Model (GCM) between-
model variability.

(5) Select an ecosystem model and assess uncertainty.

(6) Properly consider transient versus equilibrium re-
sponses.

(7) Include effects of CO, on plant response.

(8) Evaluate implications of simplifying assumptions.

(9) Consider animal linkage with vegetation.

Each of these criteria is discussed more fully in what fol-
lows.

Clearly defining an emissions scenario

It is standard practice to evaluate ecosystem impacts in terms
of the Intergovernmental Panel on climate change standard
scenarios for future emissions of greenhouse gases (Intergov-
ernmental Panel on Climate Change [IPCC] 2007). The first
factor to consider is that both the scenarios themselves and
the model ensemble warming due to the scenarios differ be-
tween the IPCC 2001 (Intergovernmental Panel on Climate
Change [IPCC] 2001) and 2007 reports. For example, while
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the A2 2001 scenario is projected to produce 3.8°C warm-
ing by 2100, the 2007 A2 scenario only projects 3.4°C global
mean increase by 2100. Thus, studies using the “same” sce-
nario published at earlier or later dates will not be strictly
comparable. In addition, model runs from 2001 show wider
spread than those from the 2007 report. In particular, earlier
studies are likely to show more impact and should be consid-
ered to be superseded by more recent ones. Model outputs
from earlier scenarios and GCMs may still be available but
should no longer be used and will exaggerate impacts if used.

A second criterion for utilizing scenarios is to distinguish
between worst-case scenario and most likely cases. If the
worst-case scenario is used in the assessment, it should not
be stated that the simulated impact is “what will” happen,
but rather is a worst case. If evaluation of a likely scenario is
desired, the appropriate case should be used.

Selecting a climate model

Early (before 1995 or even up to 2000+) GCMs either did
not simulate precipitation or were known to do so poorly
(Corte—Real et al. 1995). This includes most of the mod-
els used in the 2001 IPCC report. For evaluating ecosystem
impacts, this limitation cannot be addressed by using a con-
stant precipitation regime. If precipitation is held constant
and temperature is increased, one obviously would predict
negative effects on plants. Theory predicts, in contrast, that
a warmer climate will be accompanied by increased precipi-
tation (Wentz et al. 2007; Schliep et al. 2010; Stephens et al.
2010). Whether increased evaporative demand will be bal-
anced by increased precipitation is an open question and one
on which different models do not necessarily agree. The fu-
ture predicted water balance will also vary regionally, from
wetter to drier to neutral. Thus, it is critical that older GCM
models/model runs no longer be used for any ecosystem
studies that involve water balance. Further, in literature sum-
maries, older studies should not be given equal weight to
those using more recent GCM results.

Evaluating climate model skill and bias

Output from a climate model is often used to evaluate ecosys-
tem response, perhaps with a regional downscaling first.
These outputs are virtually always taken at face value for
conducting impact studies. Any particular model, however,
may have known skill and bias issues with respect to regional
climates. Skill can be evaluated by matching the pattern in
time or distribution of temperatures or rainfall between the
model and historical data. For example, a GCM might pro-
duce skillful annual precipitation amounts, but the seasonal
distribution could be very different from actual. The sea-
sonal amounts could be critical to properly simulating plant
growth. Similarly, a GCM could consistently predict temper-
atures too warm for a region, even though matching historical
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trends. This could lead to modeled impacts that are not re-
alistic. In IPCC assessments, in which global trends over 100
years are being evaluated, these skill and bias issues may not
affect the calculation of trends, but at the regional/local scale
for simulating ecosystem response, they cannot be ignored.

Anagnostopoulos et al. (2010) compared six climate mod-
els at multiple scales to weather data for the contiguous
United States. Model results were all warmer than the ob-
served mean annual temperature and minimum monthly
temperature by up to 4°C. This bias creates an obvious prob-
lem for any bioclimatic (niche) or simulation model used to
forecast future distributions because absolute temperatures,
not just trends, are critical to biological processes. This is
particularly true when models are developed using actual
(not model) climate data, which do not share the model
bias. Likewise, at the continental scale, they found modeled
precipitation to be 36% above the true value, which has im-
plications for any biological model. Schliep et al. (2010) and
Stephens et al. (2010) noted multiple failings in the ability of
GCMs to model precipitation, including both bias and lack
of skill.

Consider a climate model that produces output at the dry
end of what occurs in a particular region. A model of forest
growth is run under constant climate, but because of the cli-
mate model’s temperature bias, the simulated forest is near
the point at which drought stress would cause dieback. Under
almost any additional warming, this simulated forest using
this climate model would show dieback. This bias can be
addressed by comparing the GCM output to local weather
data and adjusting the model bias (as Ines and Hansen 2006)
before simulating forest growth (for both control and impact
scenarios). If it is determined that skill is lacking (e.g., rainfall
frequency distribution is wildly wrong or seasonal temper-
atures are not proportional) then another model should be
used. In any case, climate model adequacy for the intended
purpose should be evaluated rather than treating model out-
put as if it were “data.”

Quantifying GCM between-model variability

GCMs exhibit considerable variation in outputs (Furrer et al.
2007), especially at regional scales (e.g., Rowell 2006). For
example, Woollings (2010) found that simulations for Europe
differed between models (and from actual weather) for the
jet stream location, zonal air flow, blocking highs, and other
key weather patterns. It is important to note that models do
not differ only in trends or stochastically, but also in terms of
seasonality and spatial patterns of weather. There may not be
any sense in which these differences “average out” between
models.

Few studies have compared ecosystem impacts using more
than one climate model. In a study of animal habitat suitabil-
ity in Spain, Real et al. (2010) found that the differences in
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predicted habitat between two climate models for an emis-
sions scenario were greater than the differences between sce-
narios using the same climate model. Given the large num-
ber of climate models and their difficulties modeling regional
climate (noted above), it is apparent that vastly different eco-
logical impacts could be predicted depending on the model
used and the geographic region of interest, thereby violat-
ing criteria of rigor and reproducibility. One way around the
problem is to use multiple models to sample the range of
possible projections. This is especially important because at
the regional scale some models may project wetter and some
drier conditions. While this solution requires more work to
perform an analysis, a valid result depends on some estimate
of uncertainty.

Selecting an ecosystem model and assessing
uncertainty

Just as with climate models, ecosystem models can differ in
their skill and bias as well as in their suitability for a particular
task, and may produce widely varying results between models
(Cramer et al. 2001). The reasons for choosing a particular
model for an assessment need to be clearly stated. Process
models can have considerable parametric uncertainty (e.g.,
Larocque et al. 2011) that can carry through the analysis to
reduce outcome certainty. Ignoring these issues can make it
look like model output is without error, whereas it is stan-
dard practice to report confidence intervals on experimental
results.

Niche (suitability) models likewise are not guaranteed to
be accurate (Segurado and Aratjo 2004; Aratijo and Guisan
2006). Classification accuracy of niche models does not tell
the full story. Beale et al. (2008) and Pearson and Dawson
(2003) provide a more complete discussion of the inherent
uncertainty in these models including issues of variable co-
variance and spurious correlation. There is unfortunately no
modeling method that has unambiguously been shown to be
universally superior. It is critical to evaluate uncertainty due
to these issues.

Properly considering transient versus
equilibrium responses

A large part of the ecosystem response literature consists of
the analysis of habitat suitability (or geographic range) maps.
Data on climate and other variables are used to predict pres-
ence of a species, forest type, or ecosystem using regression
analysis or other tools. This model is then applied to future-
modeled climates. A large shift in the range is usually con-
sidered to be an indicator of extinction risk because species,
especially plants, are not able to migrate rapidly (e.g., Aitken
et al. 2008; Morin et al. 2008).

Implicit in these conclusions is the equating of “suitable
habitat” with the habitat necessary for survival (e.g., Aratjo
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and Guisan 2006). However, the presence of a species means
that it is competitive in the area where it occurs, not just that it
can survive there. Small differences in competitive ability will
eventually work themselves out and show up in distribution
data, but this process may take a very long time, especially
for long-lived organisms such as trees. Conditions outside
the realized niche (i.e., where the species currently occurs)
cannot be assumed to be lethal without proof. Projected cli-
mate changes are small compared to even daily temperature
variation and, for most species, are not near lethal limits
(e.g., Wertin et al. 2010). This general point was discussed
in Loehle and LeBlanc (1996) but needs repeating because
the confusion between transient and equilibrium response
continues.

Multiple studies suggest that actual vegetation responses
to even large climate shifts are slow. Cole (1985, 2009) doc-
umented a several thousand year transition in the Grand
Canyon following past warming episodes. Cwynar and Spear
(1991) showed that boreal forest advance in response to past
warming took up to 1000 years, with a faster retreat due to
cooling (which damages trees and prevents regeneration), as
also shown by Tinner et al. (2007) for boreal dieback during
the Little Ice Age. Williams et al. (2011) documented a slow
late Quaternary boreal forest expansion across the North-
ern Hemisphere. In the boreal forest, where 20th century
warming would suggest rapid geographic displacement, the
response has been very slow (Masek 2001; Payette 2007). In
no case has any study documented a “dead zone” in response
to a past climate shift, as is implied by static habitat suitability
models. Simulation models also suggest that such transitions
should be gradual (Noble 1993; Loehle 2000, 2003).

Application of these criteria involves the careful delineation
of implications from a study. It is not necessary that dynamic
simulations be used. Rather, it is critical that information on
transient response (relaxation times) can be used to qualify
conclusions. If the study concerns mobile species, equilib-
rium might be quickly achieved, but if it concerns trees it
could take hundreds to thousands of years. Nonoverlap of
current and hypothetical geographic ranges does not mean
extinction unless climate lethality can be proven by other
means.

Including effects of CO, on plant response

CO, enrichment directly increases growth and water-use ef-
ficiency (WUE) in plants (Medlyn et al. 2001; Leuzinger and
Korner 2007; Loehle 2007; Kohler et al. 2010), with effects
differing by taxa and CO; level. Increased WUE is particu-
larly important when water is limiting, and has been shown to
mitigate considerable drought stress (e.g., de Graff et al. 2006;
Wertin et al. 2010). WUE is not considered here in terms of
hydrology but only with respect to drought response. Free-
air CO, exchange (FACE) and open top chambers have both
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shown a positive response of plant growth to CO, enrich-
ment (Curtis and Wang 1998; de Graaf et al. 2006). For plant
growth or habitat suitability models, failure to include CO,
effects and WUE increases with time over the next 100 years
will lead to significant overestimates of negative impacts of
elevated temperature, reduced moisture, or both together
(Cramer et al. 2001; Pan et al. 2009; Friend 2010). Mechanis-
tic models that incorporate CO, effects are generally based
on experimental results such as FACE experiments, in some
cases with medium-sized trees over many years. Keenan et al.
(2011) simulated forest growth with and without CO, effects.
Without including CO, effects in the simulation, all three
species showed decreased net primary productivity (NPP)
over time under the warming scenario. However, when CO,
effects were included, the species exhibited increased growth
until about 2070 followed by a slight decline, ending at 2100
with slightly higher NPP than in 2000. How CO, effects are
addressed can make the difference between positive and neg-
ative growth responses under many scenarios. It is also the
case, of course, that no CO, experiments have gone as far as
100 years, covered large spatial extents, or allowed for species
shifts, so models incorporating CO, effects may give unre-
alistic or exaggerated responses at some time/space scales
(Leuzinger et al. 2011).

Evaluating implications of simplifying
assumptions

In order to conduct a geographic analysis of climate effects,
it is often necessary to make simplifying assumptions due
to data resolution. We may, for example, have GCM output
at 1° x 1° resolution. In the real world, however, fine-scale
topographic effects moderate regional climate in complex
terrain. An analysis based on coarse-scale data might suggest
that no suitable habitat remains under some scenario, when
in fact topography might provide for refugia (Scherrer and
Korner 2010; Dobrowski 2011; Godfree et al. 2011). Other
simplifications might be made, such as using a single very dry
soil type for the simulation (e.g., Coops and Waring 2011).
The criterion here is that such simplifications, while perhaps
necessary because of data or computational limitations, have
implications that qualify the results and should be discussed.
In addition, geographic data can have errors resulting from
vegetation classification, measurement error and bias, ag-
gregation error, and other sources, leading to effects possibly
larger than those resulting from the scenarios being evaluated
(Verburg et al. 2011).

Considering animal linkage with vegetation

When suitability/range map-type models are developed for
plants, there are good reasons to suppose that climate directly
determines plant distribution (as modified by competition
and fire, or course). It is equally easy to develop models for
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animals’ range, but these models might actually be proxies for
the vegetation on which the animals depend as much as for
climate per se. That is, spurious correlation is a real danger
in the absence of experimental data. For example, ruminants
depend on grasslands and waterfowl depend on marshes and
lakes. If an animal depends on certain vegetation that exhibits
a long lag in responding to climate, the animal may likewise
persist in its current range unless its physiological tolerance
is actually exceeded. If the niche model uses climate vari-
ables, the projection of animal response could be unrealistic.
Thus, it should be recognized that suitability models are cor-
relational rather than fundamental, and investigators should
carefully consider model output in this light.

Literature Survey

A literature survey was conducted to evaluate compliance
with the assessment criteria suggested here. All issues of
Global Change Biology in 2009 and 2010 and the first four
issues in 2011 were assessed. All terrestrial studies discussing
future impacts on species or ecosystems were considered (not
carbon or fire studies). Experimental and field studies were
outside the scope of the review. A total of 20 papers were
evaluated (Table 1), with one study evaluated under two cat-
egories. In the author’s experience, these 20 papers are similar
to others in the field and serve to illustrate the points made.

Growth models

Nine papers (seven of vegetation) with some sort of dynamic
or growth model utilized a variety of approaches and often

Assessing Climate Change Impacts

met most of the criteria proposed for impact assessments.
Most used the most recent IPCC AR4 climate simulations.
Keenan et al. (2011) did underestimate outcome variability
by only using one climate simulation and one forest growth
model, but is the only study that directly compared niche
and growth model results (using multiple niche models but
a single vegetation model). The inclusion of CO, effects led
to an opposite conclusion on impacts (positive) compared to
leaving them out (negative). Doherty et al. (2010) evaluated
effects of future climate on NPP of East Africa. They used out-
put from nine GCM models to capture uncertainty but only
a single vegetation model that did simulate CO, enrichment
effects. All cases projected increased NPP in the study area.
Poulter et al. (2010) simulated response of the Amazon forest
to CO, and eight different GCMs as well as vegetation model
parameter uncertainty. They found that between-climate-
model differences dominated outcome spread compared to
CO; or vegetation model parameter uncertainty, with future
precipitation uncertainty the greatest unknown determinant
of outcomes.

Chen et al. (2010) evaluated response of Douglas-fir to
projected climate change using a tree ring index model of
growth response. Variability was captured by using output
from five climate models. The inability of this approach to
include effects of rising CO, is problematic because the main
impacts of climate change in their analysis were manifested
via drought stress, which rising CO, and thus increasing
WUE would help ameliorate. Xu et al. (2009) simulated forest
growth in northern Minnesota using a single process model.
CO, was included in the model. Future climate data (27

Table 1. Percent compliance with criteria for literature survey cases (percentages calculated only for criteria relevant to the studies in question). NA

reflects that criterion not relevant to that model type.

Criteria®
n 1 2 3 4 5 6 7 8 9
Dynamic models
Plant 7 1.0 0.86 0 0.57 0.14 1.0 0.71 1.0 NA
Animal 2 0 0.5 0 0.5 1.0 1.0 NA 0 0
Niche models
Plant 7 0.71 0.43 0 0.43 0.43 0 0 0.57 NA
Animal 5 0.8 0.6 0 0.4 0.4 0 0 0 0.6
NA = not applicable
acriteria areas follows:
(1) Clearly define emissions scenario.
(2) Select climate model(s).
(3) Evaluate climate model skill and bias.
(4) Quantify GCM between-model variability.
(5) Select an ecosystem model and assess uncertainty.
(6) Properly consider transient versus equilibrium responses.
(7) Include effects of CO, on plant response.
(8) Evaluate implications of simplifying assumptions.
(9) Consider animal linkage with vegetation.
© 2011 The Author. Published by Blackwell Publishing Ltd. 67
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profiles) were mostly from older GCMs used in the third [IPCC
assessment in 2001. The large number of climate runs allowed
the large uncertainty due to forecasting to be quantified.
Morin et al. (2009) used a process-based statistical model
for leaf unfolding for 22 North American tree species as a
function of climate. A single GCM run from 2001 was used for
the A2 and B2 scenarios only. The effect of CO, on phenology
was not assessed. Spatial resolution was probably not an issue.
With a single older GCM run, there is no way to evaluate the
representativeness of their forecasts. Scheiter and Higgens
(2009) used a mechanistic model of grassland and forest
to evaluate response of the vegetation of Africa to climate
change. The model included CO, effects that were believed
to account for increased forest area and biomass as well as
the increase in total vegetated land (at the expense of desert)
by 2100. Spatial resolution was good at the scale of 1 ha. The
GCM used was a 2007 model run, but the lack of intermodel
comparison makes it difficult to evaluate results.

Two animal process models were found. Gilg et al. (2009)
explored effects of future climate on Arctic predator—prey
systems. The climate scenarios were qualitative and hence
difficult to evaluate. Snill et al. (2009) used seven up-to-date
GCM models and a process model for plague in prairie dogs.
By sampling from the plague model parameter uncertainty
space as well as the multiple GCM:s they were able to do an
exemplary job quantifying uncertainty, although they did not
assess GCM bias or skill.

Overall, process-based studies did a good job assessing un-
certainty due to between climate model variation and within
ecosystem model parametric uncertainty, although only Snall
et al. (2009) and Poulter et al. (2010) evaluated both. Most
used current climate models but none evaluated GCM skill
and bias issues.

Niche models

All seven studies using niche models for plant distributions
(Bradley 2009; Bradley et al. 2009; Randin et al. 2009; Fee-
ley and Silman 2010; Dirnbéck and Rabitsch 2011; Dlamini
2011; Keenan et al. 2011) failed to consider CO, effects on
future growth. Because much of the impact of future climate
on plants results from net water deficiency, the lack of consid-
eration of CO; effects calls results into question, especially in
light of Keenan et al’s (2011) results discussed above. Use of
future climate scenarios was mixed. Keenan et al. (2011) used
IPCC AR4 climate model results, but Dlamini (2011) used a
result from 2000, which is rather old. Dirnbéck and Rabitsch
(2011) and Feeley and Silman (2010) used simple increases
in temperature, including an extreme 8°C rise in the latter
case, with no increase in precipitation. Failure to consider fu-
ture precipitation changes generally will make impacts more
negative for plants. Uncertainty due to niche model differ-
ences was considered by Keenan et al. (2011), and that due to
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between-climate model differences by Dlamini (2011). The
equilibrium assumption (equating niche model changes with
immediate population changes) was universal in these stud-
ies, with only a mention of possible lags by Dirnbock and
Rabitsch (2011), although possible lags were considered to
be in terms of mere decades. Two studies of invasive plants
(Bradley 2009; Bradley et al. 2009) using niche models used 10
AR4 GCM runs and were thus able to quantify model-based
uncertainty, but did not assess model skill or bias and did
not clearly cite the model runs used. Because they only eval-
uated potential habitat for invasion, there was less problem
with the equilibrium assumption, but they did assume that
future unsuitable habitat for the invasive species would im-
mediately become a conservation opportunity. Randin et al.
(2009) compared scenarios at 50 km x 50 km versus 25 m x
25 m plot scales. Because they interpolated climate to ac-
count for topography at the smaller plot size, the local-scale
models showed persistence of up to 100% of species that the
European-scale model predicted would lose their entire habi-
tat. The study was limited by the use of (apparently) an older
single (approximately 2000) GCM run. The net effect in all
these models of excluding the beneficial effects of elevated
CO; and assuming rapid vegetation changes due to changes
in available suitable habitat is to greatly amplify likely neg-
ative effects or even to convert positive effects into negative
ones, as in Keenan et al. (2011). Likewise, niche models at too
coarse a resolution will miss refugia from climate change.
Five niche models were used to assess animal distributions
(Jarema et al. 2009; Carroll et al. 2010; Carvalho et al. 2010;
Rebelo et al. 2010; Habel et al. 2011). These studies used
climate projections from 2004 or 2005 except for Carvalho
et al. (2010) for which the date of the climate model could
not be determined and Jarema et al. (2009), which used a
2001 GCM run. Carvalho et al. (2010) used more than one
niche model (nine) and GCM (three) and Jarema et al. (2009)
used two GCM models and multiple niche models. Carroll
et al. (2010) developed animal niche models that included
vegetation and held vegetation constant based on considera-
tion of lags that were likely to occur in forests of the Pacific
Northwest United States. Jarema et al. (2009) found niche
models based on habitat to be almost as good as those using
climate variables alone. All other studies used niche models
dominated by climate variables and thus ignored the possibil-
ity that animals may be found in their current habitat based
on the vegetation, which would probably respond to climate
change in a lagged fashion. They all further assumed equi-
librium response, whereas animal distributions are likely to
be heavily influenced by competition and predation effects
that would take time to come to equilibrium in a new cli-
mate. Finally, a fairly extreme scenario of 6°C warming was
used by Rebelo et al. (2010). Simplifying assumptions that
may have affected results include use of 35 km? grid cells in
Dirnbock and Rabitsch (2011), only a simple temperature
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gradient (no heterogeneity or precipitation) in Feeley and
Silman (2010), the coarse spatial scale used in Carvalho et al.
(2010) that would not allow for refugia, and the assumption
in Rebelo et al. (2010) that bats are dispersal-limited. Over-
all, uncertainty was underestimated and effects were probably
exaggerated in this set of studies.

Discussion

The criteria suggested in this study are intended to guide de-
cisions in assessments of future climate change impacts and
to help prevent results from being arbitrary or showing false
precision due to lack of uncertainty information. The litera-
ture survey revealed that recent studies have not considered
some of the proposed criteria (Table 1). Violation of any of
the criteria can be serious, but some are more easily reme-
died than others. The criteria are next considered in turn,
with suggestions for improved assessments.

The examined papers generally referred back to IPCC AR4
emissions scenarios (IPCC 2007). Usually, either the A2 sce-
nario was used or a range of scenarios was evaluated. This
standard set of scenarios helps with interstudy comparisons.
Some studies used arbitrary temperature increases rather
than model outputs, which has the added problem that pre-
cipitation was held constant or ignored. If simple temperature
increases are evaluated, they should at least be more clearly
related to model scenarios. It is difficult to justify leaving
precipitation changes out of an assessment and not diffi-
cult to add this factor. Recent generation climate simulations
were not necessarily used, although the growth model stud-
ies mostly used up-to-date results. Four of seven plant niche
models used out-of-date climate models. There is really no
good reason to use old climate simulations.

No study took into account the skill or bias of the climate
models. This is problematic, especially because many used
models for current ecosystems calibrated with actual weather
data and compared them to future simulated climates in
which a bias (offset) could exist. At least a qualitative assess-
ment of climate model outputs compared to the study area
seems necessary before doing an assessment. Of the sources
of uncertainty (climate model, and niche model or growth
model), only three studies (Jarema et al. 2009; Carvalho et al.
2010; Poulter et al. 2010) considered both and many stud-
ies included only a single model and GCM dataset. It is not
impossible to avoid this problem by explicitly using the mul-
tiple climate model outputs, which are becoming increasingly
available for regional scales. Likewise, ensemble means of cli-
mate data might be available and ensemble means or overlap
for niche models (Aratjo and New 2007) are not difficult to
develop, since the statistical tools are widely available.

Studies using niche models mostly failed to properly con-
sider lags in vegetation response to climate change. They as-
sumed that habitat defined as “unsuitable” by the niche model

© 2011 The Author. Published by Blackwell Publishing Ltd.
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was immediately uninhabitable by the species or vegetation
without presenting evidence that the altered climate would
be actually lethal. Instead, competitive displacement, an in-
herently slow process that may take centuries (Noble 1993;
Loehle 2000, 2003), could eventually result in the changes
suggested by niche models. While niche models are inherently
equilibrium based, it is possible to perform some assessment
of nonequilibrium response (e.g., Aratijo and Pearson 2005).
In addition, data do exist on drought and heat tolerance of
many species, and such data should be consulted before mak-
ing claims that species or ecosystems will perish/vanish over
the next few decades due to a few degrees warming. If the
temperature rise is within the thermal tolerance of a species,
then range shifts, not extinctions, are going to result and
may take centuries. Consulting the literature to evaluate the
likely time dynamics of the output of niche models is not a
burdensome requirement.

Most studies using growth models included beneficial ef-
fects of elevated CO, on plant growth. It is noteworthy that
these models forecast much less impact or even positive ef-
fects compared to niche models, which are inherently unable
to account for future elevated CO, effects. While the ex-
act effects of elevated CO, over the long term are not known
(e.g., Leuzinger et al. 2011), the experimental literature seems
to support a growth-enhancement conclusion and models
have widely adopted this result. It would seem that dynamic
(mechanistic) models of plant response to climate change
should be preferred, though niche models are much more
widely published, perhaps due to simplicity and cost. Cost
alone does not justify a method that leads to the wrong an-
swer. At the very least, the result of any niche analysis needs
to be qualified by discussion of how CO; effects would alter
the result.

The primary simplifying assumption that impacted results
in a number of studies was the reduction of spatial hetero-
geneity considered, either due to grid scale or to elevational
gradient representation (e.g., representing it as a smooth
curve). Spatial heterogeneity can provide refugia, and fail-
ure to consider this effect will tend to exaggerate impacts, as
clearly shown by Randin et al. (2009). The limiting factors
for performing more spatially resolved analyses are com-
puter time and input data. The former can be overcome by
distributed computing or weekend runs. The latter is at least
mitigated by using the highest resolution data available rather
than aggregated data. The conceptual and analysis steps are
identical in either case.

Finally, in animal impact studies, a pervasive trend was
to model animal response solely as a function of climate. If
animals select habitat based on vegetation and the response
of vegetation to changing climate is lagged, the response of
animals will probably also be lagged. The assumption that
animals are limited by climate as defined by a niche model is
virtually unverified.
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When study results can be completely altered by including
or excluding a factor such as CO, or spatial heterogeneity and
when between-model forecasts can be extremely variable, it
is essential that these and other known factors be recognized
and addressed in any analysis of climate change effects. The
majority of surveyed studies might have yielded very different
results if the criteria suggested here had been applied. More
attention to criteria such as those proposed would lead to
much more reliable and useful impact assessments. It has
been shown above that most of these problems are easily fixed,
require a modest effort (e.g., using niche model ensembles),
or can be dealt with in the discussion of results.
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